If it's not what You are looking for type in the equation solver your own equation and let us solve it.
X^2+6X-864=0
a = 1; b = 6; c = -864;
Δ = b2-4ac
Δ = 62-4·1·(-864)
Δ = 3492
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{3492}=\sqrt{36*97}=\sqrt{36}*\sqrt{97}=6\sqrt{97}$$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(6)-6\sqrt{97}}{2*1}=\frac{-6-6\sqrt{97}}{2} $$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(6)+6\sqrt{97}}{2*1}=\frac{-6+6\sqrt{97}}{2} $
| x(4-x)-(5-x)(x+5)=x(x+1) | | 4x-40=3x+12 | | X=6+5x | | 0.75t=-4.9t^2+20t | | 0.65*15=x+23 | | 3x=11S | | (4x-1/2)=(x+7) | | 5-7r=-3 | | 5-7r=3 | | x(x+1)(x+2)(x+3)=-1 | | 0.40*15=x+68 | | 3z/8-5=6 | | 3v+-48=33 | | x+22=5(x=4 | | 6(y+7)-8y=32 | | 112g=12(32 g−1)+11 | | 6x^2+3x+2x=27 | | 3y-4=17y+16 | | 2x+4=6(x–1) | | -4i-(-7+11i)-12= | | 12+3t=72 | | 9x-188=2x-13 | | Y=24x-220 | | 14-w=23 | | 25+k=32 | | 4b-20=40 | | 3x^2–6=x^2+2 | | (0.25)^2x-1=8 | | 3x(5-x)=2(7-4x) | | 45+9x=110+3x | | 150=20x+50 | | v=3.9=6.34 |